A Teoria da Relatividade, publicada em 1915 por Albert Einstein, determinou que a energia (E) de determinado corpo corresponde à sua massa (M) multiplicada pela velocidade da luz (cerca de 300 metros/segundo) elevado ao quadrado (C²). Esta é a lógica da famosa equação: E=MC².

Mas o que isso significa? Significa que a atração gravitacional não é consequência de uma ação entre forças, como propusera anteriormente Isaac Newton, mas da deformação do espaço-tempo em função da presença de matéria. Ou seja, para Einstein, a simples presença de uma massa tem o poder de alterar não só o espaço-tempo, como também influenciar no movimento dos corpos próximos.

O espaço-tempo seria assim uma espécie de malha cósmica onde os corpos atuam, movendo-se ou repousando, e interferindo uns nos outros de acordo com as suas massas. No experimento a seguir, tenta-se fazer com que o aluno compreenda como o espaço-tempo se deforma na presença da matéria, sendo que essa deformação depende diretamente da massa presente. Essa deformação é a origem da gravidade, sendo ela mais intensa nas proximidades da massa, tal como foi postulado por Newton, em 1687.

Materiais:

— 1 Lençol ou toalha de mesa

— 1 Bola de gude

— 1 Bola de futebol, vôlei ou basquete

Procedimento: estique o lençol acima do solo fazendo com que quatro alunos segurem suas pontas. O lençol representa o espaço-tempo, a malha cósmica onde os corpos atuam.

Coloque, no centro do lençol, a bola de futebol, vôlei ou basquete, objeto de maior massa que deformará o plano. Essa deformação simula a própria deformação criada pela massa de um objeto na malha do espaço-tempo e a origem da gravidade.

Posicione a bola de gude perto da bola maior, deixe-a parada e observe o que acontece.

Em seguida, lance a bola de gude em direção à bola maior, de modo que passe por perto da bola maior, mas evitando que elas colidam.

Qualquer corpo colocado perto da massa central da bola maior será atraído por ela, uma vez que possui uma força atrativa que muda o estado original de movimento de corpos menores, como a bola de gude. Por isso, a deformação criada pela massa da bola maior é equivalente à força gravitacional existente na malha cósmica do tempo-espaço.

Se a bola de gude estiver inicialmente em repouso no lençol, ela será atraída direta e radialmente pela bola de maior massa. Mas, se a bola de gude possuir uma velocidade inicial, a sua trajetória será modificada pela força atrativa da bola maior, sofrendo um encurvamento da trajetória. Quanto mais perto da bola maior a de gude passar, mais ela sentirá a força atrativa do corpo de maior massa. Assim, a bola maior simula um planeta ou estrela e a bola de gude um objeto de menor massa, como um meteoro, um cometa ou um satélite.

Neste experimento, existe atrito, ao contrário do que acontece no espaço. Por isso, a bola de gude perderá sua velocidade progressivamente. No espaço, ao contrário, seria possível que a bola de gude orbitasse, caso a bola maior possuísse uma velocidade adequada, tal como ocorre entre o Sol e os planetas do nosso Sistema Solar ou entre a Terra e os satélites lançados pelo homem.

Compartilhe Tags
0 comentários